We discuss a class of models for particulate gels in which the particle contacts are described by an effective interaction combining a two-body attraction and a three-body angular repulsion. Using molecular dynamics, we show how varying the model parameters allows us to sample, for a given gelation protocol, a variety of gel morphologies. For a specific set of the model parameters, we identify the local elastic structures that get interlocked in the gel network. Using the analytical expression of their elastic energy from the microscopic interactions, we can estimate their contribution to the emergent elasticity of the gel and gain new insight into its origin.