Mapping the Electronic Structure Origins of Surface- and Chemistry-Dependent Doping Trends in III-V Quantum Dots


الملخص بالإنكليزية

Modifying the optoelectronic properties of nanostructured materials through introduction of dopant atoms has attracted intense interest. Nevertheless, the approaches employed are often trial and error, preventing rational design. We demonstrate the power of large-scale electronic structure calculations with density functional theory (DFT) to build an atlas of preferential dopant sites for a range of M(II) and M(III) dopants in the representative III-V InP magic sized cluster (MSC). We quantify the thermodynamic favorability of dopants, which we identify to be both specific to the sites within the MSC (i.e., interior vs surface) and to the nature of the dopant atom (i.e., smaller Ga(III) vs larger Y(III) or Sc(III)). These observations motivate development of maps of the most and least favorable doping sites, which are consistent with some known experimental expectations but also yield unexpected observations. For isovalent doping (i.e., Y(III)/Sc(III) or Ga(III), we observed stronger sensitivity of the predicted energetics to the type of ligand orientation on the surface than to the dopant type, but divergent behavior is observed for whether interior doping is favorable. For charge balancing with M(II) (i.e., Zn or Cd) dopants, we show that the type of ligand removed during the doping reaction is critical. We show that limited cooperativity with dopants up to moderate concentrations occurs, indicating rapid single-dopant estimations of favorability from DFT can efficiently guide rational design. Our work emphasizes the strong importance of ligand chemistry and surface heterogeneity in determining paths to favorable doping in quantum dots, an observation that will be general to other III-V and II-VI quantum dot systems generally synthesized with carboxylate ligands.

تحميل البحث