We give evidence that a population of pure contrarians globally coupled D-dimensional Kuramoto oscillators reaches a collective synchronous state when the interplay between the units goes beyond the limit of pairwise interactions. An exact solution for the description of the microscopic dynamics for forward and backward transitions is provided, which entails imperfect symmetry breaking of the population into a frequency-locked state featuring two clusters of different instantaneous phases. Our results lift the veil towards unlocking the power full potential of group interactions entailing multi-dimensional choices and novel dynamical states in many circumstances, such as in social systems.