3D point cloud semantic segmentation is a challenging topic in the computer vision field. Most of the existing methods in literature require a large amount of fully labeled training data, but it is extremely time-consuming to obtain these training data by manually labeling massive point clouds. Addressing this problem, we propose a superpoint-guided semi-supervised segmentation network for 3D point clouds, which jointly utilizes a small portion of labeled scene point clouds and a large number of unlabeled point clouds for network training. The proposed network is iteratively updated with its predicted pseudo labels, where a superpoint generation module is introduced for extracting superpoints from 3D point clouds, and a pseudo-label optimization module is explored for automatically assigning pseudo labels to the unlabeled points under the constraint of the extracted superpoints. Additionally, there are some 3D points without pseudo-label supervision. We propose an edge prediction module to constrain features of edge points. A superpoint feature aggregation module and a superpoint feature consistency loss function are introduced to smooth superpoint features. Extensive experimental results on two 3D public datasets demonstrate that our method can achieve better performance than several state-of-the-art point cloud segmentation networks and several popular semi-supervised segmentation methods with few labeled scenes.