Symmetric Teleparallel Gravity is an exceptional theory of gravity that is consistent with the vanishing affine connection. This theory is an alternative and a simpler geometrical formulation of general relativity, where the non-metricity $Q$ drives the gravitational interaction. Our interest lies in exploring the cosmological bouncing scenarios in a flat Friedmann-Lima^itre-Robertson-Walker (FLRW) spacetime within this framework. We explore bouncing scenarios with two different Lagrangian forms of $f(Q)$ such as a linearly and non-linearly dependence on $Q$. We have successfully examined all the energy conditions and stability analysis for both models to present a matter bounce.