This study demonstrates the implementation of the stochastic ruler discrete simulation optimization method for calibrating an agent-based model (ABM) developed to simulate hepatitis C virus (HCV) transmission. The ABM simulates HCV transmission between agents interacting in multiple environments relevant for HCV transmission in the Indian context. Key outcomes of the ABM are HCV and injecting drug user (IDU) prevalences among the simulated cohort. Certain input parameters of the ABM need to be calibrated so that simulation outcomes attain values as close as possible to real-world HCV and IDU prevalences. We conceptualize the calibration process as a discrete simulation optimization problem by discretizing the calibration parameter ranges, defining an appropriate objective function, and then applying the stochastic ruler random search method to solve this problem. We also present a method that exploits the monotonic relationship between the simulation outcomes and calibration parameters to yield improved calibration solutions with lesser computational effort.