We report the identification of symmetry-enforced nodal planes (NPs) in CoSi providing the missing topological charges in an entire network of band-crossings comprising in addition multifold degeneracies and Weyl points, such that the fermion doubling theorem is satisfied. In our study we have combined measurements of Shubnikov-de Haas (SdH) oscillations in CoSi with material-specific calculations of the electronic structure and Berry curvature, as well as a general analysis of the band topology of space group (SG) 198. The observation of two nearly dispersionless SdH frequency branches provides unambiguous evidence of four Fermi surface sheets at the R point that reflect the symmetry-enforced orthogonality of the underlying wave functions at the intersections with the NPs. Hence, irrespective of the spin-orbit coupling strength, SG198 features always six- and fourfold degenerate crossings at R and $Gamma$ that are intimately connected to the topological charges distributed across the network.