Following over a decade of intense efforts to enable major progress in spintronics devices and quantum information technology by means of materials in which the electronic structure exhibits non-trivial topological properties, three key challenges are still unresolved. First, the identification of topological band degeneracies that are generically rather than accidentally located at the Fermi level. Second, the ability to easily control such topological degeneracies. And third, to identify generic topological degeneracies in large, multi-sheeted Fermi surfaces. Combining de Haas - van Alphen spectroscopy with density functional theory and band-topology calculations, we report here that the non-symmorphic symmetries in ferromagnetic MnSi generate nodal planes (NPs), which enforce topological protectorates (TPs) with substantial Berry curvatures at the intersection of the NPs with the Fermi surface (FS) regardless of the complexity of the FS. We predict that these TPs will be accompanied by sizeable Fermi arcs subject to the direction of the magnetization. Deriving the symmetry conditions underlying topological NPs, we show that the 1651 magnetic space groups comprise 7 grey groups and 26 black-and-white groups with topological NPs, including the space group of ferromagnetic MnSi. Thus, the identification of symmetry-enforced TPs on the FS of MnSi that may be controlled with a magnetic field suggests the existence of similar properties, amenable for technological exploitation, in a large number of materials.