As a result of experimental studies of the single-crystal iron-chalcogenide compound FeTe0.65Se0.35, the effect of structural transitions caused by hydrogen sorption on the magnetic and current-carrying properties of a superconductor has been established. An increase in the volume-averaged effective pinning potential (and the associated critical current density) after the process of hydrogen sorption at temperatures up to 150 {deg}C - 200 {deg}C can be explained by the appearance of additional pinning centers due to the local action of implanted H ions on its crystal structure and electronic states. It was confirmed that hydrogenation is an efficient tool for increasing flux pining properties of superconductors.