Prediction of high-Tc superconductivity in ternary lanthanum borohydrides


الملخص بالإنكليزية

The study of superconductivity in compressed hydrides is of great interest due to measurements of high critical temperatures (Tc) in the vicinity of room temperature, beginning with the observations of LaH10 at 170-190 GPa. However, the pressures required for synthesis of these high Tc superconducting hydrides currently remain extremely high. Here we show the investigation of crystal structures and superconductivity in the La-B-H system under pressure with particle-swarm intelligence structure searches methods in combination with first-principles calculations. Structures with six stoichiometries, LaBH, LaBH3, LaBH4, LaBH6, LaBH7 and LaBH8, were predicted to become stable under pressure. Remarkably, the hydrogen atoms in LaBH8 were found to bond with B atoms in a manner that is similar to that in H3S. Lattice dynamics calculations indicate that LaBH7 and LaBH8 become dynamically stable at pressures as low as 109.2 and 48.3 GPa, respectively. Moreover, the two phases were predicted to be superconducting with a critical temperature (Tc) of 93 K and 156 K at 110 GPa and 55 GPa, respectively. Our results provide guidance for future experiments targeting new hydride superconductors with both low synthesis pressures and high Tc.

تحميل البحث