$E1$ and M1 radiative transitions involving heavy-light axial, pseudoscalar and vector quarkonia in the framework of Bethe-Salpeter equation


الملخص بالإنكليزية

This work is an extension of our previous work in cite{bhatnagar20} to calculate M1 transitions, $0^{-+}rightarrow 1^{--} gamma$, and E1 transitions involving axial vector mesons such as, $1^{+-} rightarrow 0^{-+}gamma$, and $0^{-+}rightarrow 1^{+-} gamma $ for which very little data is available as of now. We make use of the general structure of the transition amplitude, $M_{fi}$ derived in our previous work cite{bhatnagar20} as a linear superposition of terms involving all possible combinations of $++$, and $--$ components of Salpeter wave functions of final and initial hadrons. In the present work, we make use of leading Dirac structures in the hadronic Bethe-Salpeter wave functions of the involved hadrons, which makes the formulation more rigorous. We evaluate the decay widths for both the above mentioned $M1$ and $E1$ transitions. We have used algebraic forms of Salpeter wave functions obtained through analytic solutions of mass spectral equations for ground and excited states of $1^{--}$,$0^{-+}$ and $1^{+-}$ heavy-light quarkonia in approximate harmonic oscillator basis to do analytic calculations of their decay widths. We have compared our results with experimental data, where ever available, and other models.

تحميل البحث