Uniqueness and asymptotic stability of time-periodic solution for the fractal Burgers equation


الملخص بالإنكليزية

The paper is concerned with the time-periodic (T-periodic) problem of the fractal Burgers equation with a T-periodic force on the real line. Based on the Galerkin approximates and Fourier series (transform) methods, we first prove the existence of T-periodic solution to a linearized version. Then, the existence and uniqueness of T-periodic solution to the nonlinear equation are established by the contraction mapping argument. Furthermore, we show that the unique T-periodic solution is asymptotically stable. This analysis, which is carried out in energy space $ H^{1}(0,T;H^{frac{alpha}{2}}(R))cap L^{2}(0,T;dot{H}^{alpha})$ with $1<alpha<frac{3}{2}$, extends the T-periodic viscid Burgers equation in cite{5} to the T-periodic fractional case.

تحميل البحث