We provide explicit sequence space representations for the test function and distribution spaces occurring in the Valdivia-Vogt structure tables by making use of Wilson bases generated by compactly supported smooth windows. Furthermore, we show that these kind of bases are common unconditional Schauder bases for all separable spaces occurring in these tables. Our work implies that the Valdivia-Vogt structure tables for test functions and distributions may be interpreted as one large commutative diagram.