We consider general fermionic quantum field theories with a global finite group symmetry $G$, focusing on the case of 2-dimensions and torus spacetime. The modular transformation properties of the family of partition functions with different backgrounds is determined by the t Hooft anomaly of $G$ and fermion parity. For a general possibly non-abelian $G$ we provide a method to determine the modular transformations directly from the bulk 3d invertible topological quantum field theory (iTQFT) corresponding to the anomaly by inflow. We also describe a method of evaluating the character map from the real representation ring of $G$ to the group which classifies anomalies. Physically the value of the map is given by the anomaly of free fermions in a given representation. We assume classification of the anomalies/iTQFTs by spin-cobordisms. As a byproduct, for all abelian symmetry groups $G$, we provide explicit combinatorial expressions for corresponding spin-bordism invariants in terms of surgery representation of arbitrary closed spin 3-manifolds. We work out the case of $G=mathbb{Z}_2$ in detail, and, as an application, we consider the constraints that t Hooft anomaly puts on the spectrum of the infrared conformal field theory.