Exploring Context Modeling Techniques on the Spatiotemporal Crowd Flow Prediction


الملخص بالإنكليزية

In the big data and AI era, context is widely exploited as extra information which makes it easier to learn a more complex pattern in machine learning systems. However, most of the existing related studies seldom take context into account. The difficulty lies in the unknown generalization ability of both context and its modeling techniques across different scenarios. To fill the above gaps, we conduct a large-scale analytical and empirical study on the spatiotemporal crowd prediction (STCFP) problem that is a widely-studied and hot research topic. We mainly make three efforts:(i) we develop new taxonomy about both context features and context modeling techniques based on extensive investigations in prevailing STCFP research; (ii) we conduct extensive experiments on seven datasets with hundreds of millions of records to quantitatively evaluate the generalization ability of both distinct context features and context modeling techniques; (iii) we summarize some guidelines for researchers to conveniently utilize context in diverse applications.

تحميل البحث