Muon g-2 from Millicharged Hidden Confining Sector


الملخص بالإنكليزية

We provide a novel explanation to the muon $g-2$ excess with new physics contributions at the two-loop level. In this scenario, light millicharged particles are introduced to modify the photon vacuum polarization that contributes to muon $g-2$ at one additional loop. The muon $g-2$ excess can be explained with the millicharged particle mass $m_chi$ around 10 MeV and the product of the multiplicity factor and millicharge squared of $N_chi varepsilon^2 sim 10^{-3}$. The minimal model faces severe constraints from direct searches at fixed-target experiments and astrophysical observables. However, if the millicharged particles are also charged under a hidden confining gauge group $SU(N_chi)$ with a confinement scale of MeV, hidden-sector hadrons are unstable and can decay into neutrinos, which makes this scenario consistent with existing constraints. This explanation can be well tested at low-energy lepton colliders such as BESIII and Belle II as well as other proposed fixed-target experiments.

تحميل البحث