Curve graphs of surfaces with finite-invariance index 1


الملخص بالإنكليزية

In this note we make progress toward a conjecture of Durham--Fanoni--Vlamis, showing that every infinite-type surface with finite-invariance index 1 and no nondisplaceable compact subsurfaces fails to have a good curve graph, that is, a connected graph where vertices represent homotopy classes of essential simple closed curves and where the natural mapping class group action has infinite diameter orbits. Our arguments use tools developed by Mann--Rafi in their study of the coarse geometry of big mapping class groups.

تحميل البحث