Metal-Insulator Transition with Charge Fractionalization


الملخص بالإنكليزية

It has been proposed that an extended version of the Hubbard model which potentially hosts rich possibilities of correlated physics may be well simulated by the transition metal dichalcogenide (TMD) moir{e} heterostructures. Motivated by recent reports of continuous metal insulator transition (MIT) at half filling, as well as correlated insulators at various fractional fillings in TMD moir{e} heterostructures, we propose a theory for the potentially continuous MIT with fractionalized electric charges. The charge fractionalization at the MIT will lead to experimental observable effects, such as a large universal resistivity jump and interaction driven bad metal at the MIT, as well as special scaling of the quasi-particle weight with the tuning parameter. These predictions are different from previously proposed theory for continuous MIT.

تحميل البحث