In this study, we investigate an extreme ultraviolet (EUV) wave event on 2010 February 11, which occurred as a limb event from the Earth viewpoint and a disk event from the STEREO--B viewpoint. We use the data obtained by the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) in various EUV channels. The EUV wave event was launched by a partial prominence eruption. Similar to some EUV wave events in previous works, this EUV wave event contains a faster wave with a speed of $sim$445$pm$6 km s$^{-1}$, which we call coronal Moreton wave, and a slower wave with a speed of $sim$298$pm$5 km s$^{-1}$, which we call EIT wave. The coronal Moreton wave is identified as a fast-mode wave and the EIT wave is identified as an apparent propagation due to successive field-line stretching. We also observe a stationary front associated with the fast mode EUV wave. This stationary front is explained as mode conversion from the coronal Moreton wave to a slow-mode wave near a streamer.