Louvain-like Methods for Community Detection in Multi-Layer Networks


الملخص بالإنكليزية

In many complex systems, entities interact with each other through complicated patterns that embed different relationships, thus generating networks with multiple levels and/or multiple types of edges. When trying to improve our understanding of those complex networks, it is of paramount importance to explicitly take the multiple layers of connectivity into account in the analysis. In this paper, we focus on detecting community structures in multi-layer networks, i.e., detecting groups of well-connected nodes shared among the layers, a very popular task that poses a lot of interesting questions and challenges. Most of the available algorithms in this context either reduce multi-layer networks to a single-layer network or try to extend algorithms for single-layer networks by using consensus clustering. Those approaches have anyway been criticized lately. They indeed ignore the connections among the different layers, hence giving low accuracy. To overcome these issues, we propose new community detection methods based on tailored Louvain-like strategies that simultaneously handle the multiple layers. We consider the informative case, where all layers show a community structure, and the noisy case, where some layers only add noise to the system. We report experiments on both artificial and real-world networks showing the effectiveness of the proposed strategies.

تحميل البحث