The kagome lattice, which is composed of a network of corner-sharing triangles, is a structural motif in quantum physics first recognized more than seventy years ago. It has been gradually realized that materials which host such special lattice structures can exhibit quantum diversity, ranging from spin-liquid phases, topological matter to intertwined orders. Recently, charge sensitive probes have suggested that the kagome superconductors AV_3Sb_5 (A = K, Rb, Cs) exhibit unconventional chiral charge order, which is analogous to the long-sought-after quantum order in the Haldane model or Varma model. However, direct evidence for the time-reversal symmetry-breaking of the charge order remains elusive. Here we utilize state-of-the-art muon spin relaxation to probe the kagome charge order and superconductivity in KV_3Sb_5. We observe a striking enhancement of the internal field width sensed by the muon ensemble, which takes place just below the charge ordering temperature and persists into the superconducting state. Remarkably, the muon spin relaxation rate below the charge ordering temperature is substantially enhanced by applying an external magnetic field. We further show the multigap nature of superconductivity in KV_3Sb_5 and that the T_c/lambda_{ab}^{-2} ratio is comparable to those of unconventional high-temperature superconductors. Our results point to time-reversal symmetry breaking charge order intertwining with unconventional superconductivity in the correlated kagome lattice.