Nonlinear Quantum Optimization Algorithms via Efficient Ising Model Encodings


الملخص بالإنكليزية

Despite extensive research efforts, few quantum algorithms for classical optimization demonstrate realizable advantage. The utility of many quantum algorithms is limited by high requisite circuit depth and nonconvex optimization landscapes. We tackle these challenges to quantum advantage with two new variational quantum algorithms, which utilize multi-basis graph encodings and nonlinear activation functions to outperform existing methods with shallow quantum circuits. Additionally, both algorithms provide a polynomial reduction in measurement complexity and either a factor of two speedup textit{or} a factor of two reduction in quantum resources. Typically, the classical simulation of such algorithms with many qubits is impossible due to the exponential scaling of traditional quantum formalism and the limitations of tensor networks. Nonetheless, the shallow circuits and moderate entanglement of our algorithms, combined with efficient tensor method-based simulation, enable us to successfully optimize the MaxCut of high-connectivity graphs with up to $512$ nodes (qubits) on a single GPU.

تحميل البحث