Atomic-scale Visualization of Electronic Fluid Flow


الملخص بالإنكليزية

The most essential characteristic of any fluid is the velocity field v(r) and this is particularly true for macroscopic quantum fluids. Although rapid advances have occurred in quantum fluid v(r) imaging, the velocity field of a charged superfluid - a superconductor - has never been visualized. Here we use superconductive-tip scanning tunneling microscopy to image the electron-pair density r{ho}_S(r) and velocity v_S(r) fields of the flowing electron-pair fluid in superconducting NbSe2. Imaging v_S(r) surrounding a quantized vortex finds speeds reaching 10,000 km/hr. Together with independent imaging of r{ho}_S(r) via Josephson tunneling, we visualize the supercurrent density j_S(r)=r{ho}_S(r)v_S(r), which peaks above 3 x 10^7 A/cm^2. The spatial patterns in electronic fluid flow and magneto-hydrodynamics reveal hexagonal structures co-aligned to the crystal lattice and quasiparticle bound states, as long anticipated. These novel techniques pave the way for electronic fluid flow visualization in many other quantum fluids.

تحميل البحث