Mixing of X and Y molecular states from QCD Sum Rules analysis


الملخص بالإنكليزية

We study $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$ molecular states as mixed states in QCD sum rules. By calculating the two-point correlation functions of pure states of their corresponding currents, we review the mass and coupling constant predictions of $J^{PC}=1^{++}$, $1^{--}$, $1^{-+}$ molecular states. By calculating the two-point mixed correlation functions of $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$ molecular currents, and we estimate the mass and coupling constants of the corresponding ``physical state that couples to both $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$ currents. Our results suggest that $1^{++}$ states are more likely mixing from $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$ components, while for $1^{--}$ and $1^{-+}$ states, there is less mixing between $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$. Our results suggest the $Y$ series of states have more complicated components.

تحميل البحث