A-type antiferromagnetic order and magnetic phase diagram of the trigonal Eu spin-7/2 triangular-lattice compound EuSn2As2


الملخص بالإنكليزية

The trigonal compound EuSn2As2 was recently discovered to host Dirac surface states within the bulk band gap and orders antiferromagnetically below the Neel temperature TN = 24 K. Here the magnetic ground state of single-crystal EuSn2As2 and the evolution of its properties versus temperature T and applied magnetic field H are reported. Included are zero-field single-crystal neutron-diffraction measurements versus T, magnetization M(H,T), magnetic susceptibility chi(H,T) = M(T)/H, heat capacity Cp(H,T), and electrical resistivity rho(H,T) measurements. The neutron-diffraction and chi(T) measurements both indicate a collinear A-type antiferromagnetic (AFM) structure below TN =23.5(2) K, where the Eu{2+} spins S = 7/2 in a triangular ab-plane layer (hexagonal unit cell) are aligned ferromagnetically in the ab plane whereas the spins in adjacent Eu planes along the c axis are aligned antiferromagnetically. The chi(H{ab},T) and chi(H{c},T) data together indicate a smooth crossover between the collinear AFM alignment and an unknown magnetic structure at H ~ 0.15 T. Dynamic spin fluctuations up to 60 K are evident in the chi(T), Cp(T) and rho(H,T) measurements, a temperature that is more than twice TN. The rho(H,T) of the compound does not reflect a contribution of the topological state, but rather is consistent with a low-carrier-density metal with strong magnetic scattering. The magnetic phase diagrams for both H||c and H||ab in the H-T plane are constructed from the TN(H), chi(H,T), Cp(H,T), and rho(H,T) data.

تحميل البحث