A proof of conjecture of Li-Yang


الملخص بالإنكليزية

In this paper, we prove a conjecture posed by Li-Yang in cite{ly3}. We prove the following result: Let $f(z)$ be a nonconstant entire function, and let $a(z) otequivinfty, b(z) otequivinfty$ be two distinct small meromorphic functions of $f(z)$. If $f(z)$ and $f^{(k)}(z)$ share $a(z)$ and $b(z)$ IM. Then $f(z)equiv f^{(k)}(z)$, which confirms a conjecture due to Li and Yang (in Illinois J. Math. 44:349-362, 2000).

تحميل البحث