Spanning $F$-cycles in random graphs


الملخص بالإنكليزية

We extend a recent argument of Kahn, Narayanan and Park (Proceedings of the AMS, to appear) about the threshold for the appearance of the square of a Hamilton cycle to other spanning structures. In particular, for any spanning graph, we give a sufficient condition under which we may determine its threshold. As an application, we find the threshold for a set of cyclically ordered copies of $C_4$ that span the entire vertex set, so that any two consecutive copies overlap in exactly one edge and all overlapping edges are disjoint. This answers a question of Frieze. We also determine the threshold for edge-overlapping spanning $K_r$-cycles.

تحميل البحث