Band topology of pseudo-Hermitian phases through tensor Berry connections and quantum metric


الملخص بالإنكليزية

Among non-Hermitian systems, pseudo-Hermitian phases represent a special class of physical models characterized by real energy spectra and by the absence of non-Hermitian skin effects. Here, we show that several pseudo-Hermitian phases in two and three dimensions can be built by employing $q$-deformed matrices, which are related to the representation of deformed algebras. Through this algebraic approach we present and study the pseudo-Hermitian version of well known Hermitian topological phases, raging from two-dimensional Chern insulators and time-reversal-invariant topological insulators to three-dimensional Weyl semimetals and chiral topological insulators. We analyze their topological bulk states through non-Hermitian generalizations of Abelian and non-Abelian tensor Berry connections and quantum metric. Although our pseudo-Hermitian models and their Hermitian counterparts share the same topological invariants, their band geometries are different. We indeed show that some of our pseudo-Hermitian phases naturally support nearly-flat topological bands, opening the route to the study of pseudo-Hermitian strongly-interacting systems. Finally, we provide an experimental protocol to realize our models and measure the full non-Hermitian quantum geometric tensor in synthetic matter.

تحميل البحث