In 1997, Bousquet-Melou and Eriksson stated a broad generalization of Eulers distinct-odd partition theorem, namely the $(k,l)$-Euler theorem. Their identity involved the $(k,l)$-lecture-hall partitions, which, unlike usual difference conditions of partitions in Rogers-Ramanujan type identities, satisfy some ratio constraints. In a 2008 paper, in response to a question suggested by Richard Stanley, Savage and Yee provided a simple bijection for the $l$-lecture-hall partitions (the case $k=l$), whose specialization in $l=2$ corresponds to Sylvesters bijection. Subsequently, as an open question, a generalization of their bijection was suggested for the case $k,lgeq 2$. In the spirit of Savage and Yees work, we provide and prove in this paper slight variations of the suggested bijection, not only for the case $k,lgeq 2$ but also for the cases $(k,1)$ and $(1,k)$ with $kgeq 4$. Furthermore, we show that our bijections equal the recursive bijections given by Bousquet-Melou and Eriksson in their recursive proof of the $(k,l)$-lecture hall and finally provide the analogous recursive bijection for the $(k,l)$-Euler theorem.