Organelles of optimum size are crucial for proper functioning of a living cell. The cell employs various mechanisms for actively sensing and controlling the size of its organelles. Recently Bauer et al have opened a new research frontier in the field of subcellular size control by shedding light on the noise and fluctuations of organelles of controlled size. Taking eukaryotic flagellum as a model organelle, which is quite popular for such studies because of its linear geometry and dynamic nature, Bauer et al have analysed the nature of fluctuations of its length. Here we summarize the key questions and the fundamental importance of the recent developments. Although our attention is focussed here mainly on the experimental and theoretical works on eukaryotic flagellum, the ideas are general and applicable to wide varieties of cell organelle.