On Exact Solvability of $mathcal N$=4 super Yang-Mills


الملخص بالإنكليزية

We consider the ambitwistor description of $mathcal N$=4 supersymmetric extension of U($N$) Yang-Mills theory on Minkowski space $mathbb R^{3,1}$. It is shown that solutions of super-Yang-Mills equations are encoded in real-analytic U($N$)-valued functions on a domain in superambitwistor space ${mathcal L}_{mathbb R}^{5|6}$ of real dimension $(5|6)$. This leads to a procedure for generating solutions of super-Yang-Mills equations on $mathbb R^{3,1}$ via solving a Riemann-Hilbert-type factorization problem on two-spheres in $mathcal L_{mathbb R}^{5|6}$.

تحميل البحث