Hierarchy and robustness of multilevel two-time temporal quantum correlations


الملخص بالإنكليزية

Quantum steering refers to correlations that can be classified as intermediate between entanglement and Bell nonlocality. Every state exhibiting Bell nonlocality exhibits also quantum steering and every state exhibiting quantum steering is also entangled. In low dimensional cases similar hierarchical relations have been observed between the temporal counterparts of these correlations. Here, we study the hierarchy of such temporal correlations for a general multilevel quantum system. We demonstrate that the same hierarchy holds for two definitions of state over time. In order to compare different types of temporal correlations, we show that temporal counterparts of Bell nonlocality and entanglement can be quantified with a temporal nonlocality robustness and temporal entanglement robustness. Our numerical result reveal that in contrast to temporal steering, for temporal nonlocality to manifest itself we require the initial state not to be in a completely mixed state.

تحميل البحث