Departing from the weak solution, we prove the uniqueness, smoothing estimates and the global dynamics for the non cutoff spatially homogeneous Boltzmann equation with moderate soft potentials. Our results show that the behavior of the solution(including the production of regularity and the longtime behavior) can be {it characterized quantitatively} by the initial data at the large velocities, i.e.(i). initially polynomial decay at the large velocities in $L^1$ space will induce the finite smoothing estimates in weighted Sobolev spaces and the polynomial convergence rate (including the lower and upper bounds) to the equilibrium; (ii). initially the exponential decay at the large velocities in $L^1$ space will induce $C^infty$ regularization effect and the stretched exponential convergence rate. The new ingredients of the proof lie in the development of the localized techniques in phase and frequency spaces and the propagation of the exponential momentum.