Dynamical regimes of finite temperature discrete nonlinear Schrodinger chain


الملخص بالإنكليزية

We show that the one dimensional discrete nonlinear Schrodinger chain (DNLS) at finite temperature has three different dynamical regimes (ultra-low, low and high temperature regimes). This has been established via (i) one point macroscopic thermodynamic observables (temperature $T$ , energy density $epsilon$ and the relationship between them), (ii) emergence and disappearance of an additional almost conserved quantity (total phase difference) and (iii) classical out-of-time-ordered correlators (OTOC) and related quantities (butterfly speed and Lyapunov exponents). The crossover temperatures $T_{textit{l-ul}}$ (between low and ultra-low temperature regimes) and $T_{textit{h-l}}$ (between high and low temperature regimes) extracted from these three different approaches are consistent with each other. The analysis presented here is an important step forward towards the understanding of DNLS which is ubiquitous in many fields and has a non-separable Hamiltonian form. Our work also shows that the different methods used here can serve as important tools to identify dynamical regimes in other interacting many body systems.

تحميل البحث