Non-Convex Tensor Low-Rank Approximation for Infrared Small Target Detection


الملخص بالإنكليزية

Infrared small target detection plays an important role in many infrared systems. Recently, many infrared small target detection methods have been proposed, in which the lowrank model has been used as a powerful tool. However, most low-rank-based methods assign the same weights for different singular values, which will lead to inaccurate background estimation. Considering that different singular values have different importance and should be treated discriminatively, in this paper, we propose a non-convex tensor low-rank approximation (NTLA) method for infrared small target detection. In our method, NTLA adaptively assigns different weights to different singular values for accurate background estimation. Based on the proposed NTLA, we use the asymmetric spatial-temporal total variation (ASTTV) to thoroughly describe background feature, which can achieve good background estimation and detection in complex scenes. Compared with the traditional total variation approach, ASTTV exploits different smoothness strength for spatial and temporal regularization. We develop an efficient algorithm to find the optimal solution of the proposed model. Compared with some state-of-the-art methods, the proposed method achieve an improvement in different evaluation metrics. Extensive experiments on both synthetic and real data demonstrate the proposed method provide a more robust detection in complex situations with low false rates.

تحميل البحث