Understanding creep of a single-crystalline Co-Al-W-Ta superalloy by studying the deformation mechanism, segregation tendency and stacking fault energy


الملخص بالإنكليزية

A systematic study of the compression creep properties of a single-crystalline Co-base superalloy (Co-9Al-7.5W-2Ta) was conducted at 950 {deg}C, 975 {deg}C and 1000 {deg}C to reveal the influence of temperature and the resulting diffusion velocity of solutes like Al, W and Ta on the deformation mechanisms. Two creep rate minima are observed at all temperatures indicating that the deformation mechanisms causing these minima are quite similar. Atom-probe tomography analysis reveals elemental segregation to stacking faults, which had formed in the $gammaprime$ phase during creep. Density-functional-theory calculations indicate segregation of W and Ta to the stacking fault and an associated considerable reduction of the stacking fault energy. Since solutes diffuse faster at a higher temperature, segregation can take place more quickly. This results in a significantly faster softening of the alloy, since cutting of the $gammaprime$ precipitate phase by partial dislocations is facilitated through segregation already during the early stages of creep. This is confirmed by transmission electron microscopy analysis. Therefore, not only the smaller precipitate fraction at higher temperatures is responsible for the worse creep properties, but also faster diffusion-assisted shearing of the $gammaprime$ phase by partial dislocations. The understanding of these mechanisms will help in future alloy development by offering new design criteria.

تحميل البحث