On convergence of intrinsic volumes of Riemannian manifolds


الملخص بالإنكليزية

In 1939 H. Weyl has introduced the so called intrinsic volumes $V_i(M^n), i=0,dots,n$, (known also as Lipschitz-Killing curvatures) for any closed smooth Riemannian manifold $M^n$. Given a Riemmanian submersion of compact smooth Riemannian manifolds $Mto B$, $B$ is connected. For $varepsilon >0$ let us define a new Riemannian metric on $M$ by multiplying the original one by $varepsilon$ along the vertical directions and keeping it the same along the (orthogonal) horizontal directions. Denote the corresponding Riemannian manifold by $M_varepsilon$. The main result says that $lim_{varepsilonto +0} V_i(M_varepsilon)=chi(Z) V_i(B)$, where $chi(Z)$ is the Euler characteristic of a fiber of the submersion. This result is consistent with more general open conjectures on convergence of intrinsic volumes formulated previously by the author.

تحميل البحث