Crucial Factors of Ly{alpha} Transmission in the Reionizing Intergalactic Medium: Infall Motion, HII Bubble Size, and Self-shielded Systems


الملخص بالإنكليزية

Using the CoDaII simulation, we study the Ly$alpha$ transmissivity of the intergalactic medium (IGM) during reionization. At $z>6$, a typical galaxy without an active galactic nuclei fails to form a proximity zone around itself due to the overdensity of the surrounding IGM. The gravitational infall motion in the IGM makes the resonance absorption extends to the red side of Ly$alpha$, suppressing the transmission up to roughly the circular velocity of the galaxy. In some sightlines, an optically thin blob generated by a supernovae in a neighboring galaxy results in a peak feature, which can be mistaken for a blue peak. Red-ward of the resonance absorption, the damping-wing opacity correlates with the global IGM neutral fraction and the UV magnitude of the source galaxy. Brighter galaxies tend to suffer lower opacity because they tend to reside in larger HII regions, and the surrounding IGM transmits redder photons, which are less susceptible to attenuation, owing to stronger infall velocity. The HII regions are highly nonspherical, causing both sightline-to-sightline and galaxy-to-galaxy variation in opacity. Also, self-shielded systems within HII regions strongly attenuate the emission for certain sightlines. All these factors adds to the transmissivity variation, requiring a large sample size to constrain the average transmission. The variation is largest for fainter galaxies at higher redshift. The 68% range of the transmissivity is similar to or greater than the median for galaxies with $M_{rm UV}ge-21$ at $zge7$, implying that more than a hundred galaxies would be needed to measure the transmission to 10% accuracy.

تحميل البحث