We have developed a wideband receiver system for simultaneous observations in CO lines of J = 2-1 and J = 3-2 transitions using the Osaka 1.85-m mm-submm telescope. As a frequency separation system, we developed multiplexers that connect three types of diplexers, each consisting of branch-line couplers and high-pass filters. The radio frequency (RF) signal is eventually distributed into four frequency bands, each of which is fed to a superconductor-insulator-superconductor (SIS) mixer. The RF signal from the horn is divided into two frequency bands by a wideband diplexer with a fractional bandwidth of 56%, and then each frequency band is further divided into two bands by each diplexer. The developed multiplexers were designed, fabricated, and characterized using a vector network analyzer. The measurement results showed good agreement with the simulation. The receiver noise temperature was measured by connecting the SIS-mixers, one of which has a wideband 4-21GHz intermediate frequency (IF) output. The receiver noise temperatures were measured to be ~70K in the 220GHz band, ~100K in the 230GHz band, 110-175K in the 330GHz band, and 150-250K in the 345GHz band. This receiver system has been installed on the 1.85-m telescope at the Nobeyama Radio Observatory. We succeeded in the simultaneous observations of six CO isotopologue lines with the transitions of J = 2-1 and J = 3-2 toward the Orion KL as well as the on-the-fly (OTF) mappings toward the Orion KL and W 51.