Results from higher order mean field calculations of light interacting with atom arrays are presented for calculations of one- and two-time expectation values. The atoms are approximated as two-levels and are fixed in space. Calculations were performed for mean field approximations that include the expectation value of one operator (mean field), two operators (mean field-2), and three operators (mean field-3). For the one-time expectation values, we examined three different situations to understand the convergence with increasing order of mean field and some limitations of higher order mean field approximations. As a representation of a two-time expectation value, we calculated the $g^{(2)}(tau )$ for a line of atoms illuminated by a perpendicular plane wave at several emission angles and two different intensities. For many cases, the mean field-2 will be sufficiently accurate to quantitatively predict the response of the atoms as measured by one-time expectation values. However, the mean field-3 approximation will often be needed for two-time expectation values.