DARNet: Dual-Attention Residual Network for Automatic Diagnosis of COVID-19 via CT Images


الملخص بالإنكليزية

The ongoing global pandemic of Coronavirus Disease 2019 (COVID-19) poses a serious threat to public health and the economy. Rapid and accurate diagnosis of COVID-19 is crucial to prevent the further spread of the disease and reduce its mortality. Chest Computed tomography (CT) is an effective tool for the early diagnosis of lung diseases including pneumonia. However, detecting COVID-19 from CT is demanding and prone to human errors as some early-stage patients may have negative findings on images. Recently, many deep learning methods have achieved impressive performance in this regard. Despite their effectiveness, most of these methods underestimate the rich spatial information preserved in the 3D structure or suffer from the propagation of errors. To address this problem, we propose a Dual-Attention Residual Network (DARNet) to automatically identify COVID-19 from other common pneumonia (CP) and healthy people using 3D chest CT images. Specifically, we design a dual-attention module consisting of channel-wise attention and depth-wise attention mechanisms. The former is utilized to enhance channel independence, while the latter is developed to recalibrate the depth-level features. Then, we integrate them in a unified manner to extract and refine the features at different levels to further improve the diagnostic performance. We evaluate DARNet on a large public CT dataset and obtain superior performance. Besides, the ablation study and visualization analysis prove the effectiveness and interpretability of the proposed method.

تحميل البحث