Neighborhood-Aware Neural Architecture Search


الملخص بالإنكليزية

Existing neural architecture search (NAS) methods often return an architecture with good search performance but generalizes poorly to the test setting. To achieve better generalization, we propose a novel neighborhood-aware NAS formulation to identify flat-minima architectures in the search space, with the assumption that flat minima generalize better than sharp minima. The phrase flat-minima architecture refers to architectures whose performance is stable under small perturbations in the architecture (e.g., replacing a convolution with a skip connection). Our formulation takes the flatness of an architecture into account by aggregating the performance over the neighborhood of this architecture. We demonstrate a principled way to apply our formulation to existing search algorithms, including sampling-based algorithms and gradient-based algorithms. To facilitate the application to gradient-based algorithms, we also propose a differentiable representation for the neighborhood of architectures. Based on our formulation, we propose neighborhood-aware random search (NA-RS) and neighborhood-aware differentiable architecture search (NA-DARTS). Notably, by simply augmenting DARTS with our formulation, NA-DARTS finds architectures that perform better or on par with those found by state-of-the-art NAS methods on established benchmarks, including CIFAR-10, CIFAR-100 and ImageNet.

تحميل البحث