Decentralized Online Learning for Noncooperative Games in Dynamic Environments


الملخص بالإنكليزية

Decentralized online learning for seeking generalized Nash equilibrium (GNE) of noncooperative games in dynamic environments is studied in this paper. Each player aims at selfishly minimizing its own time-varying cost function subject to time-varying coupled constraints and local feasible set constraints. Only local cost functions and local constraints are available to individual players, who can receive their neighbors information through a fixed and connected graph. In addition, players have no prior knowledge of cost functions and local constraint functions in the future time. In this setting, a novel distributed online learning algorithm for seeking GNE of the studied game is devised based on mirror descent and a primal-dual strategy. It is shown that the presented algorithm can achieve sublinearly bounded dynamic regrets and constraint violation by appropriately choosing decreasing stepsizes. Finally, the obtained theoretical result is corroborated by a numerical simulation.

تحميل البحث