Abundance Patterns of $alpha$ and Neutron-capture Elements in the Helmi Stream


الملخص بالإنكليزية

We identified 8 additional stars as members of the Helmi stream (HStr) in the combined GALAH+ DR3 and $Gaia$ EDR3 catalog. By consistently reevaluating claimed members from the literature, we consolidate a sample of 22 HStr stars with parameters determined from high-resolution spectroscopy and spanning a considerably wider (by $sim$0.5 dex) metallicity interval ($-2.5 lesssim rm[Fe/H] < -1.0$) than previously reported. Our study focuses on $alpha$ (Mg and Ca) and neutron-capture (Ba and Eu) elements. We find that the chemistry of HStr is typical of dwarf spheroidal (dSph) galaxies, in good agreement with previous $N$-body simulations of this merging event. Stars of HStr constitute a clear declining sequence in $rm[alpha/Fe]$ for increasing metallicity up to $rm[Fe/H] sim -1.0$. Moreover, stars of HStr show a median value of $+$0.5 dex for $rm[Eu/Fe]$ with a small dispersion ($pm$0.1 dex). Every star analyzed with $rm[Fe/H] < -1.2$ belong to the $r$-process enhanced ($rm[Eu/Fe] > +0.3$ and $rm[Ba/Eu] < 0.0$) metal-poor category, providing remarkable evidence that, at such low-metallicity regime, stars of HStr experienced enrichment in neutron-capture elements predominantly via $r$-process nucleosynthesis. Finally, the extended metallicity range also suggests an increase in $rm[Ba/Eu]$ for higher $rm[Fe/H]$, in conformity with other surviving dwarf satellite galaxies of the Milky Way.

تحميل البحث