We propose an exact model of anyon ground states including higher Landau levels, and use it to obtain fractionally quantized Hall states at filling fractions $ u=p/(p(m-1)+1)$ with $m$ odd, from integer Hall states at $ u=p$ through adiabatic localization of magnetic flux. For appropriately chosen two-body potential interactions, the energy gap remains intact during the process. The construction hence establishes the existence of incompressible states at these fillings.