Icosahedral quasicrystal-enhanced nucleation in Al alloys fabricated by selective laser melting


الملخص بالإنكليزية

Selective laser melting (SLM) is rapidly evolving to become a mainstream technology. However, the fundamental mechanisms of solidification and microstructure development inherent to the non-equilibrium conditions of this additive manufacturing method, which differ largely from those typical of conventional processing techniques, remain widely unknown. In this work, an in-depth characterization of the microstructure of Al7075 SLM processed samples, built from powder mixtures containing ZrH2 microparticles, demonstrates the occurrence of icosahedral quasicrystal-enhanced nucleation during laser fabrication. This solidification mechanism, only observed to date in cast Al-Zn and yellow gold alloys containing minute additions of Cr (Kurtuldu et al., 2013) or Ti (Chen et al. 2018), and Ir (Kurtuldu et al., 2014), is evidenced by the presence of an abnormally high fraction of twin boundaries and of five-fold orientation symmetry between twinned nearest neighbors lying within a matrix of equiaxed, randomly textured, ultrafine grains. This research attests to the wide range of possibilities offered by additive manufacturing methods for the investigation of novel physical metallurgy phenomena as well as for the design of advanced metals.

تحميل البحث