Gamma-ray bursts (GRBs) are classified as long and short events. Long GRBs (LGRBs) are associated with the end states of very massive stars, while short GRBs (SGRBs) are linked to the merger of compact objects. GRB 200826A challenges this rigid classification scheme. The GRB was, by definition, a SGRB, with an intrinsic duration ~0.5 s. However, the event was energetic and soft, which is consistent with LGRBs. The relatively low redshift (z=0.748577) motivated a comprehensive, multi-wavelength follow-up campaign to search for a possible associated supernova (SN) event and to determine the characteristics of its host galaxy. To this aim we obtained a combination of deep near-infrared (NIR) and optical imaging together with spectroscopy. Our analysis reveals a NIR bump in the light curve at 37.1 days (21.2 days in rest-frame) whose luminosity and evolution is in agreement with several LGRB-SNe. Analysis of the prompt GRB shows that this event follows the Ep,i-Eiso relation found for LGRBs. The host galaxy is a low-mass star-forming galaxy, typical for LGRB, but with one of the highest specific star formation rate and highest metallicity with respect to its mass. We conclude that GRB 200826A is a typical collapsar event in the low tail of the duration distribution of LGRBs. This finding shows that GRBs associated with a SN explosions cover a wide range of spectral peak energies, radiated energies, and durations down to ~0.5 seconds in the host frame.