The set of associative and commutative hypercomplex numbers, called the perfect hypercomplex algebra (PHA) is investigated. Necessary and sufficient conditions for an algebra to be a PHA via semi-tensor product(STP) of matrices are reviewed. The zero set is defined for non-invertible hypercomplex numbers in a given PHA, and a characteristic function is proposed for calculating zero set. Then PHA of different dimensions are considered. First, $2$-dimensional PHAs are considered as examples to calculate their zero sets etc. Second, all the $3$-dimensional PHAs are obtained and the corresponding zero sets are investigated. Third, $4$-dimensional or even higher dimensional PHAs are also considered. Finally, matrices over pre-assigned PHA, called perfect hypercomplex matrices (PHMs) are considered. Their properties are also investigated.