Non-topological gauged soliton solutions called Q-balls arise in many scalar field theories that are invariant under a U(1) gauge symmetry. The related, but qualitatively distinct, Q-shell solitons have only been shown to exist for special potentials. We investigate gauged solitons in a generic sixth-order polynomial potential (that contains the leading effects of many effective field theories) and show that this potential generically allows for both Q-balls and Q-shells. We argue that Q-shell solutions occur in many, and perhaps all, potentials that have previously only been shown to contain Q-balls. We give simple analytic characterizations of these Q-shell solutions, leading to excellent predictions of their physical properties.