Suppose two quantum circuit chips are located at different places, for which we do not have any prior knowledge, and cannot see the internal structures either. If we want to find out whether they have the same functions or not with certainty, what should we do? In this paper, we show that this realistic problem can be solved from the viewpoints of quantum nonlocality. Specifically, we design an elegant protocol that examines underlying quantum nonlocality. We prove that in the protocol the strongest nonlocality can be observed if and only if two quantum circuits are equivalent to each other. We show that the protocol also works approximately, where the distance between two quantum circuits can be lower and upper bounded analytically by observed quantum nonlocality. Furthermore, we also discuss the possibility to generalize the protocol to multipartite cases, i.e., if we do equivalence checking for multiple quantum circuits, we try to solve the problem in one go. Our work introduces a nontrivial application of quantum nonlocality in quantum engineering.